
ALGEBRAIC CURVES
SOLUTIONS SHEET 6

Unless otherwise specified, k is an algebraically closed field.

Exercise 1. Let V , W be varieties and assume that W is affine.

(1) Show that there is a bijection HomV ar(V,W ) ≃ Homk−alg(O(W ),O(V )).
(2) Show that there is a bijection O(V ) ≃ HomV ar(V,A1

k).
(3) Show that O(P1

k) ≃ k.
(4) Show that O(Pnk) ≃ k for all n ≥ 1.

Solution 1.

(1) Let ϕ : V → W be a morphism of varieties. Then ϕ∗ : O(W ) → O(V )
defined by f 7→ f ◦ ϕ is a k−algebra morphism.

To go in the other direction, let Φ: O(W ) → O(V ) be a k-algebra ho-
momorphism. There are at least two approaches:

Approach 1: We use that by Exercise 3.5, points ofW correspond to maximal ideals
of Γ(U), and as U is affine we have Γ(U) = O(U). Now notice that for
any P ∈ V , we have an evaluation morphism evP : O(V ) → k, defined
by f 7→ f(P ). Note that this is a morphism of k-algebras. There-
fore, we obtain a k-algebra homomorphism evP ◦Φ: O(W ) → k, so in
particular it is surjective (on elements of k it is the identity). Hence
ker(evP ◦Φ) is a maximal ideal of O(W ), and hence it correspond to
a point QP ∈ W . Let us define a map Φ♭ : V → W by Φ♭(P ) := QP .
Let us show that Φ♭ is a morphism of varieties.
First we have to show continuity. So let W ′ ⊆ W be closed, and
let I(W ′) ⊆ O(W ) be its ideal. Note that as the correspondence in
Exercise 3.5 is inclusion reversing, we have for all P ∈ V

Φ♭(P ) ∈ W ′ ⇐⇒ V (I(Φ♭(P ))) ⊆ V (I(W ′))

⇐⇒ I(Φ♭(P )) ⊇ I(W ′)

⇐⇒ ker(evP ◦Φ) ⊇ I(W ′)

⇐⇒ ∀f ∈ I(W ′) : Φ(f)(P ) = 0

⇐⇒ P ∈
⋂

f∈I(W ′)

Φ(f)−1(0)

where we used that by definition the ideal of {Φ♭(P )} is ker(evP ◦Φ).
As for any f , Φ(f) ∈ O(V ) is continuous as a function V → k, we
arrived in the end at an intersection of closed subsets in the end. Hence
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we obtain that (Φ♭)−1(W ′) =
⋂
f∈I(W ′) Φ(f)

−1({0}) is closed, so Φ♭ is
continuous.
Now to verify that it is indeed a morphism, let us first show that
Φ(f) = f ◦ Φ♭ for any element f ∈ O(W ). This comes from the
following very general observation: if X is any affine variety, Q ∈ X
is any point and g ∈ O(X) any function, then g − g(Q) ∈ I(Q).
Therefore, in our present situation we have

f − f(Φ♭(P )) ∈ I(Φ♭(P )) = ker(evp ◦Φ)
and thus

0 = evp ◦Φ
(
f − f(Φ♭(P ))

)
= Φ(f)(P )− f(Φ♭(P )).

As this holds for every P ∈ V , we indeed conclude that Φ(f) = f ◦Φ♭.
Finally, let us show that Φ♭ is a morphism by using Lemma 3.8. As
W is affine, we can view it as a Zariski closed subset W ⊆ An, and
let x1, . . . , xn : An → A1 be the coordinates. By abuse of notation, we
also denote by x1, . . . , xn their images in O(W ) (i.e. their restrictions
to W ). Then we have for all i that

xi ◦ Φ♭ = Φ(xi) ∈ O(V ),

i.e. xi◦Φ♭ is regular. By Lemma 3.8, we conclude that Φ♭ is a morphism
of varieties.
We are left to show that the two constructions are mutually inverse.
On the one hand, let ϕ : V → W be any morphism of varieties, and
let P ∈ V be arbitrary. Then for any f ∈ O(W ) we have

f(ϕ∗♭(P )) = ϕ∗(f)(P ) = f(ϕ(P )).

In particular, by taking f = xi for 1 ≤ i ≤ n, we obtain that ϕ∗♭(P ) =
ϕ(P ), and thus ϕ∗♭ = ϕ.
On the other hand, let Φ: O(W ) → O(V ) be any morphism of k-
algebras, and let f ∈ O(W ) be arbitrary. Then for any P ∈ V , we
have

Φ♭∗(f)(P ) = f ◦ Φ♭(P ) = Φ(f)(P ),

so Φ♭∗(f) = Φ(f), and as f was arbitrary we conclude Φ♭∗ = Φ.
Approach 2: Another way of defining Φ♭ is the following: fix a closed embed-

ding W ⊆ An, and denote by x1, . . . , xn the coordinates. Denote
by x1, . . . , xn ∈ O(W ) their restriction to W . We define a map

Φ♭ : V → W

P 7→ (Φ(x1)(P ), . . . ,Φ(xn)(P )).

Firstly, we have to show that this is well-defined, i.e. that for all P ∈ V
we indeed have (Φ(x1)(P ), . . . ,Φ(xn)(P )) ∈ W (a priori it is just some
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point in An). To do so, let f ∈ I(W ) ⊆ k[x1, . . . , xn] be arbitrary. As
f is a polynomial and polynomials commute with morphisms of rings,
we have

f(Φ(x1)(P ), . . . ,Φ(xn)(P )) = f(evP ◦Φ(x1), . . . , evP ◦Φ(xn))
= evP ◦Φ(f(x1, . . . , xn)︸ ︷︷ ︸

=0

)

= 0,

where in the last step we used that f ∈ I(W ). Hence we indeed
conclude that Φ♭(P ) ∈ W for all P ∈ W .
To verify that Φ♭ is a morphism, we again use Lemma 3.8: for every
1 ≤ i ≤ n we have by construction that xi ◦ Φ♭ = Φ(xi) ∈ O(V ), i.e.
it is regular on V . Hence Φ♭ is indeed a morphism.
Finally, we have to show that the two constructions are mutually in-
verse. On the one hand, let ϕ : V → W be any morphis of varieties,
and let P ∈ V be arbitrary. Then

ϕ∗♭(P ) = (ϕ∗(x1)(P ), . . . , ϕ
∗(xn)(P ))

= (x1(ϕ(P )), . . . , xn(ϕ(P )))

= (ϕ(P )1, . . . , ϕ(P )n)

= ϕ(P ),

so we conclude ϕ∗♭ = ϕ.
On the other hand, let Φ: O(W ) → O(V ) be arbitrary, and let also
f = f + I(W ) ∈ O(W ) and P ∈ V be arbitrary. Then we have

Φ♭∗(f)(P ) = f(Φ♭(P ))

= f(Φ(x1)(P ), . . . ,Φ(xn)(P ))

= f(Φ(x1)(P ), . . . ,Φ(xn)(P ))

= Φ(f(x1, . . . , xn)︸ ︷︷ ︸
=f

)(P )

= Φ(f)(P ),

where we again used that polynomials commute with ring morphisms,
so we conclude Φ♭∗ = Φ.

(2) Clearly from (1) we get that HomV ar(V,A1) ≃ Homk−alg(k[x],O(V )). So
it suffices to see that Homk−alg(k[x],O(V )) ≃ O(V ). This is clear, since
a k–algebra homomorphism from k[x] into any k–algebra is completely
determined by choosing the image of x. More concretely, one can verify
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that

Homk−alg(k[x],O(V )) → O(V )

Φ 7→ Φ(x)

is a bijection, where the preimage of f ∈ O(V ) is the unique k–algebra
homomorphism k[x] → O(V ) sending x to f .

(3) Using question 2, O(P1
k) = HomV ar(P1,A1). Call x1 and x2 the projective

corrdinates and P1 = U1∪U2 the corresponding standard affine open cover,
with isomorphisms φi : A1 → Ui. Let f : P1 → A1 be arbitrary. Then we
obtain morphisms f ◦ φi : A1 → A1, which are given by some polynomial
pi ∈ k[x]. Note that for any a ∈ A1 \ {0} we have

p2(a) = f ◦ φ2(a) = f([a : 1]) = f([1 : 1/a]) = f ◦ φ1(1/a) = p1(1/a).

As this equality holds on the dense open set A1\{0}, we conclude that p2(x)
and p1(1/x) agree as elements of the localization k[x, x−1]. But as both p1
and p2 are polynomials, this can only happen if both of them are constants.
Hence f has to be constant as well. Therefore, the map k → O(P1) sending
an element a of k to the function constantly equal to k is a bijection.

A nice notational trick is the following: let for φ1 : A1 → U1 we denote
the coordinate of A1 by the symbol x2/x1, and for φ2 : A1 → U2 we denote
the coordinate of A1 by x1/x2.

Because of the way φ1, φ2 are defined, two functions p1 : A1
x2/x1

→ A1

resp. p2 : A1
x1/x2

→ A1 glue to a function f : P1 → A1 (i.e. p1 ◦ φ−1
1 and

p2 ◦ φ−1
2 agree on the intersection U1 ∩ U2) if and only if p1(x2/x1) =

p2(x1/x2) as elements of k[x1/x2, x2/x1]. One could also solve the exercise
this way.

(4) There are at least three approaches to solve this
Approach 1: We can mimic the solution to point (3), but first we need to intro-

duce some notation, and discuss how to think of regular funcitons
on Pn. Denote by x1, . . . , xn+1 the projective coordinates on Pn, by
Pn = U1 ∪ · · · ∪ Un+1 the standard open cover, with isomorphisms
φi : An → Ui. Denote the coordinates of An by y1, . . . , yn. Then in
particular, we have an isomorphism φ̃i : OPn(Ui) → k[y1, . . . , yn]. So
which regular functions on Ui are mapped to the variables y1, . . . , yn?
Note that the functions x1/xi, . . . xi−1/xi, xi+1/xi, . . . , xn+1/xi on Pn
are elements of OPn(Ui), and from the definition of φi, you can con-
vince yourself that we have in fact φ̃i(xj/xi) = yj for j < i and
φ̃i(xj/xi) = yj−1 for j > i. Therefore, OPn(Ui) is generated as a k–
algebra by x1/xi, . . . xi−1/xi, xi+1/xi, . . . , xn+1/xi, and these functions
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are algebraically independent over k. We may summarize this by writ-
ing

OPn(Ui) = k

[
x1
xi
, . . .

xi−1

xi
,
xi+1

xi
, . . . ,

xn+1

xi

]
,

remembering that the xj/xi behave like the indeterminate variables in
a polynomial ring.
Now by point (2) of Exercise 2 applied to Ui \ V (xj/xi), we actually
have

OPn(Ui ∩ Uj) = k

[
x1
xi
, . . .

xi−1

xi
,
xi+1

xi
, . . . ,

xn+1

xi
,
xi
xj

]
=

{
p

xai x
b
j

| a, b ≥ 0, p ∈ k[x1, . . . , xn+1]a+b, p not divisible by xi, xj

}
Note that the image of the restriction map OPn(Ui) → OPn(Ui ∩Uj) is
precisely the set of those elements which in the above description have
b = 0. Similarly, the image of the restriction map OPn(Uj) → OPn(Ui∩
Uj) is the set of elements with a = 0. Therefore, the intersection of
the images of OPn(Ui) and OPn(Uj) inside OPn(Ui ∩ Uj) is the set of
elements with a = b = 0, i.e. it is just k.
Now to the actual problem: let f ∈ O(Pn) be arbitrary. Then f |Ui∩Uj

∈
OPn(Ui ∩ Uj) lies in the images of both OPn(Ui) → OPn(Ui ∩ Uj) and
OPn(Uj) → OPn(Ui ∩ Uj) (with preimages f |Ui

resp. f |Uj
). By the

above discussion, we must have f |Ui∩Uj
= c for some c ∈ k. But then

the vanishing locus of the function f − c ∈ O(Pn) contains the dense
open set Ui ∩ Uj, so we obtain that V (f − c) = Pn, i.e. f = c.

Remark. This proof actually shows that for all i ̸= j we haveOPn(Ui∪
Uj) = k. This is actually a stronger statement than OPn(Pn) = k:
indeed, as two regular functions which agree on a dense open subset
agree globally, the restriction mapOPn(Pn) → OPn(Ui∪Uj) is injective,
so the latter being k implies that the former is as well.
On the other hand, it is not a coincidence that in our situation the map
OPn(Pn) → OPn(Ui ∪ Uj) is an isomorphism. Indeed, there is a result
known as Hartogs Lemma, which says that for a normal (google it!)
variety X and an open set U ⊆ X such that dim(X \U) ≤ dimX − 2,
the restriction map OX(X) → OX(U) is an isomorphism. Note that
Pn \ (Ui ∪ Uj) ∼= Pn−2, so taking for granted that Pn is normal, we see
that OPn(Pn) → OPn(Ui ∪ Uj) is an isomorphism.

Approach 2: The function fieldK(Pn) of Pn is the following subfield of k(x1, . . . , xn+1):

K(Pn) =
{
p

q
| f, g ∈ k[x1, . . . , xn+1] homog. of the same deg.

}
⊆ k(x1, . . . , xn+1).
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Note that the natural map OPn(Pn) → K(Pn) is injective, because if
two regular functions agree on a dense open subset then they agree
globally.
Now let f ∈ OPn(Pn) be arbitrary, and regard it as an element of
K(Pn), where we can write f = p/q with p, q ∈ k[x1, . . . , xn+1] ho-
mogeneous of the same degree. Now as k[x1, . . . , xn+1] is a UFD and
irreducible factors of homogeneous polynomials are homogeneous, we
may assume that p, q are coprime. In particular, if f = a/b for a, b
homogeneous of the same degree, we must have p | a and q | b. So f
is defined precisely on Pn \ V (q). But as f ∈ OPn(Pn) by assumption,
we assume V (q) = ∅. This can only be the case if q ∈ k, and thus
also p ∈ k. Hence f = p/q inside K(Pn), and as OPn(Pn) → K(Pn) is
injective, we conclude that f is constant.

Approach 3: Let f ∈ OPn(Pn) be arbitrary and consider it as a morphism f : Pn →
A1 by point (2). Let P,Q ∈ Pn be arbitrary distinct points, and write
P = [p] resp. Q = [q] for some p, q ∈ An+1 \ {0}. Now note that we
have a morphism φ defined by the formula

φ : P1 → Pn

[a : b] 7→ [ap+ bq].

You can either verify directly that this is indeed a morphism, or use
that it is a composition of inclusions of ’hyperplanes’ at infinity Pm ↪→
Pm+1 (sending [p] to [p : 0]) and a projective change of coordinates, all
of which we know to be morphisms.
Now note that f ◦ φ : P1 → A1, so by point (3) it follows that f ◦ φ is
constant. In particular, we have

f(P ) = f ◦ φ([1 : 0]) = f ◦ φ([0 : 1]) = f(Q).

As P,Q ∈ Pn were arbitrary, we conclude that f is constant.

Exercise 2. Let n ≥ 1 and f ∈ k[x1, . . . , xn].

(1) Show that An
k − V (f) is affine. What is its ring of regular functions?

(2) Show that A2
k − {(0, 0)} is not affine. (Hint: compute the ring of regular

functions).

Solution 2.

(1) Let D(f) denote An \ V (f). Denote by x1, . . . , xn the coordinates of An,
and by x1, . . . , xn, y the coordinates of An+1. On the one hand, consider
the map

φ : D(f) → V (1− yf) ⊆ An+1

(x1, . . . , xn) 7→
(
x1, . . . , xn,

1

f(x1, . . . , xn)

)
;
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it is straightforward to see that the image of φ indeed lands in V (1− yf).
Note that xi ◦ φ = xi and y ◦ φ = 1/f , all of which are regular on D(f).
Hence by Lemma 3.8 we conclude that φ is a morphism.

On the other hand, let π : An+1 → An be the projection onto the first
n-coordinates, which is a morphism. Then π|V (1−yf) : V (1− yf) → An is a
morphism as well. Furthermore, you can verify that the image of π|V (1−yf)
lands inside D(f). As corestricting to an open subset preserves morphisms
(this comes just from the fact that for inclusions of open subset U ⊆ V ⊆ W

we have OV (U) = OW (U)), we obtain that ψ := π|D(f)
V (1−yf) : V (1 − yf) →

D(f) is a morphism.
Finally, it is straightforward to see that φ ◦ ψ = IdV (1−yf) and ψ ◦ φ =

IdD(f), so they are isomorphisms, and in particular D(f) is isomorphic to
the affine variety V (1− yf).

(2) Denote W := A2 \ {(0, 0)}, and by x, y the coordinates on A2. We start by
computing O(W ): let f ∈ O(W ) be arbitrary. There are two approaches
to solving this

Approach 1: As A2 is irreducible, for any open subset U ⊆ A2 the natural map
O(U) → K(A2) from the regular functions on U into the function
field of A2 is an injection. Note that K(A2) = k(x, y), so we can
write f = a/b for some a, b ∈ k[x, y] which are coprime. Assume by
contradiction that b has positive degree. Note that then V (b) contains
infinitely many elements; we will prove this at the end. In particular,
the set V (b) \ {(0, 0)} is non-empty, i.e. it contains some point p. But
then f is not defined at p: if c, d ∈ k[x, y] are such that f = c/d,
we must have in particular that b | d, so also p ∈ V (d). On the
other hand, as f ∈ O(W ) it must be defined at p, contradiction.
Hence we must have b ∈ k×, and thus f ∈ k[x, y]. Hence we conclude
that O(W ) = k[x, y], i.e. the restriction map O(A2) → O(W ) is an
isomorphism.
We finish by proving that for non-constant b ∈ k[x, y], the vanishing
locus V (b) is infinite: indeed, up to interchanging x and y, we may
assume that a positive power of x appears in b. Then, write b =
b0(y)+b1(y)x+ · · ·+bd(y)xd for some b0, . . . , bd ∈ k[y], with bd ̸= 0 and
d > 0. In particular, V (b1, . . . , bd) is finite and thus A1 \ V (b1, . . . , bd)
is infinite. Furthermore, for c ∈ A1 \ V (b1, . . . , bd), the polynomial
b(x, c) ∈ k[x] has positive degree, so as k is algebraically closed, there
exists xc ∈ k with b(xc, c) = 0. Hence V (b) contains at least as many
elements as A1 \ V (b1, . . . , bd), and thus is infinite.
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Approach 2: Let f ∈ O(W ) be arbitrary. Note that W = D(x) ∪ D(y), and by
point (1) we have

O(D(x)) = k[x, y, x−1]

O(D(y)) = k[x, y, y−1]

O(D(x) ∩D(y)) = O(D(xy)) = k[x, y, (xy)−1] = k[x, y, x−1, y−1].

It is then clear that the image of the restriction map O(D(x)) →
O(D(xy)) is precisely the set of those elements of k[x, y, x−1, y−1]
where no negative power of y appears, and the image of the restriction
map O(D(y)) → O(D(xy)) is precisely the set of those elments where
no negative power of x appears. Hence, the intersection of these im-
ages is the set of those elements where no negative power of neither x
nor y appear, i.e. it is k[x, y] ⊆ k[x, y, x−1, y−1]. As f |D(xy) lies in the
intersection of these images, we conclude that f |D(xy) ∈ k[x, y], and
as D(xy) is dense open in W we conclude that f ∈ k[x, y]. In other
words, the restriction map O(A2) → O(W ) is an isomorphism.

Assume now by contradiction that O(W ) is affine. Then by point (1)
of Exercise 1, the restriction map Φ: O(A2) → O(W ) and its inverse
Ψ: O(W ) → O(A2) induce mutually inverse morphisms φ : W → A2 and
ψ : A2 → W . If ι : W ↪→ A2 denotes the inclusion, then clearly Φ = − ◦ ι,
so in fact we see that φ = ι. But then ψ has to be an inverse to the in-
clusion map, which doesn’t exist (where is (0, 0) sent?). We arrived at a
contradiction, so W cannot be affine.

Remark. As in point (4) of Exercise 1, if we admit that A2 is normal, then
by Hartogs Lemma it would follow immediately that O(W ) = O(A2), as
A2 \W = {(0, 0)} has codimension 2.

Exercise 3. Let φ : V → W be a morphism of affine varieties and φ♯ : Γ(W ) →
Γ(V ) the corresponding morphism of coordinate rings. Let P ∈ V and Q =
φ(P ) and consider local rings OP (V ), OQ(W ) with maximal ideals mP ,mQ. Show
that φ♯ extends uniquely to a ring homomorphism OQ(W ) → OP (V ) and that
φ♯(mQ) ⊆ mP .

Solution 3. Note that we have the commutative diagram

Γ(W ) Γ(V )

k

φ♯

evQ
evP

and thus

(φ♯)−1(mP ) = (φ♯)−1(ev−1
P (0)) = (evP ◦φ♯)−1(0) = ev−1

Q (0) = mQ.
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Note that by abuse of notation, we also denote the maximal ideals in Γ(V ) resp.
Γ(W ) corresponding to P resp. Q by mP resp. mQ.
Consider now the following commutative diagram

Γ(W ) Γ(V )

Γ(V )mP

φ♯

ιP ◦φ♯
ιP

If now f ∈ Γ(W ) \ mQ, then as (φ♯)−1(mP ) = mQ we have φ♯(f) /∈ mP , and thus
ιP ◦ φ♯(f) is a unit in Γ(V )mP

. By the universal property of localization, there

exists a unique map φ♯P fitting in the commutative diagram

Γ(W ) Γ(V )

Γ(W )mQ
Γ(V )mP

φ♯

ιQ ιP

φ♯
P

Note that from this diagram, we infer that φ♯P maps f/g ∈ Γ(W )mQ
to φ♯(f)/φ♯(g) ∈

Γ(V )mP
. By point (3) of Proposition 3.11, we have Γ(V )mP

= OP (V ) and Γ(W )mQ
=

OQ(W ), where a fraction f/g is mapped to [D(g), f/g]. It is then straightforward

to see that the induced map φ♯P : OQ(W ) → OP (V ) maps [U, f ] to [φ−1(U), f ◦φ].

Remark. • For a morphism of rings φ : R → S and maximal ideals m ⊆ R
and n ⊆ S, requiring f(m) ⊆ n is equivalent to requiring m ⊆ f−1(n).
Clearly the latter implies the former. On the other hand, if we suppose
that f(m) ⊆ n, then f−1(n) is a non-trivial ideal of R containing m, so by
maximality we must have f−1(n) = m.

• Note that it is true for general varieties V,W (not necessarily affine), that

a morphism φ : V → W induces a morphism of local rings φ♯P : OQ(W ) →
OP (V ) for any P ∈ V andQ = φ(P ) ∈ W , and that furthermore (φ♯P )

−1(mP ) =

mQ. Indeed, we may define φ♯P as

φ♯P : OQ(W ) → OP (V )

[U, f ] 7→ [φ−1(U), f ◦ φ].

Of course we need to check a couple of things: as φ is a morphism and
φ(P ) = Q, we have that φ−1(U) is an open set containing P and f ◦
φ is regular on φ−1(U). Furthermore, for two choices of representatives
[U, f ] = [U ′, f ′], it is straightforward to check that [φ−1(U ′), f ′ ◦ φ], so

φ♯P . Also, as precomposition with φ respects the ring operations, it is also

straightforward to check that φ♯P is a morphism of rings. At last, let us
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check that (φ♯P )
−1(mP ) = mQ. For this, it suffices to see that we have the

commutative diagram

OQ(W ) OP (V )

k

φ♯
P

evQ
evP

In particular, we have

(φ♯P )
−1(mP ) = (φ♯P )

−1(ev−1
P (0)) = (evP ◦φ♯P )

−1(0) = ev−1
Q (0) = mQ.

which completes the construction.

• The construction is functorial: if we have morphisms U
φ→ V

ψ→ W , and
P ∈ U , Q = φ(P ) ∈ V as well as R = ψ(Q), then (ψ ◦ φ)♯P = φ♯P ◦ ψ♯Q.

Exercise 4. Let n ≥ 1 and V a variety. We use projective coordinates xi, 1 ≤ i ≤
n + 1 on Pnk . Suppose there exist an open cover (Ui)1≤i≤n+1 of V and morphisms
of varieties φi : Ui → {xi ̸= 0} ⊆ Pnk , 1 ≤ i ≤ n+1, such that ∀i ̸= j, (φi)↾Ui∩Uj

=
(φj)↾Ui∩Uj

. Show that there exists a unique morphism φ : V → Pnk such that
φ↾Ui

= φi. We say that φ is obtained by glueing the φi, 1 ≤ i ≤ n+ 1.

Solution 4. We can clearly define a map

φ : V → Pn

x ∈ Ui 7→ φi(x)

As the φi’s agree on the intersections of the Ui’s, it is well-defined. We need to
show that it is a morphism. Let f ∈ OPn(W ) be a regular function on an open
subsetW ⊆ Pn. Let P ∈ φ−1(W ) be arbitrary and let i be such that P ∈ Ui. Then
defineWi := W ∩{xi ̸= 0}. Note that f ◦φ = f ◦φi on φ−1

i (Wi), and P ∈ φ−1
i (Wi).

As f ◦ φi is regular, we thus obtain that f ◦ φ is regular at P . As P ∈ φ−1(W )
was arbitrary, we conclude that f ◦φ is regular, i.e. f ◦φ ∈ O(φ−1(W )). Hence φ
is a morphism.

Exercise 5. Let f ∈ k[x1, x2, x3] an irreducible form of degree 2 and consider
VP (f) ⊆ P2

k.

(1) Show that, up to a linear change of coordinates, we can assume that f =
x22 − x1x3. (Hint: remember we classified similar subvarieties of A2

k).
(2) Show that the map:

P1
k → P2

k

(s : t) 7→ (s2 : st : t2)

induces an isomorphism P1
k ≃ VP (f). (Hint: take a look locally in the

standard affine opens of projective space and use exercise 4).

Solution 5.
10



(1) Let f∗ be the dehomogenization of f (with respect to x3). Note that f∗ ∈
k[x1, x2] is quadratic: indeed, we have f = xd3(f∗)

∗ for some d ≥ 0, and as
f is irreducible we must have d = 0, i.e. f = (f∗)

∗. As homogenization
preserves the degree, we obtain that f∗ is of degree 2. Furthermore, as (·)∗
is multiplicative, we obtain that f∗ is irreducible.
By (the solution of) Exercise 6 on Sheet 4, there exists a linear change

of coordinates T : A2 → A2 such that f∗ ◦ T ∈ {x1x2 − 1, x21 − x2}. Now let
T ′ : A3 → A3 the linear change of coordinates which is T on the first two
components and the identity on the third. As − ◦ T ′ and − ◦ T preserve
the degree of a polynomial, it is straightforward to check that

(g ◦ T )∗ = g∗ ◦ T ′

for every g ∈ k[x1, x2]. In particular, we obtain

f ◦ T ′ = (f∗)
∗ ◦ T ′ = (f∗ ◦ T )∗,

so as f∗◦T ∈ {x1x2−1, x21−x2}, we obtain f◦T ′ ∈ {x1x2−x23, x21−x2x3}. So
by permuting the coordinates (which is linear), we obtain a linear change
of coordinates T ′′ such that f ◦ T ′′ = x32 − x1x3.

(2) Related to Exercise 4 is the following slogan, which will be what we use:
being a morphism of varieties is a local property. Concretely, what it means
is the following:

Let V,W be varieties, and let φ : V → W be a map of sets. Suppose that
there exists an open cover W =

⋃
iWi, and for every i a cover φ−1(Wi) =⋃

j Vij with Vij ⊆ V open for every j, such that the (co-)restriction φ|Wi
Vij

is
a morphism for all i, j. Then φ is a morphism.

Indeed, if U ⊆ W is open, then

φ−1(U) =
⋃
i

φ−1(Wi ∩ U) =
⋃
i

⋃
j

Vij ∩ φ−1(Wi ∩ U) =
⋃
i,j

(φ|Wi
Vij

)−1(Wi ∩ U).

As φ|Wi
Vij

is continuous for all i, j, we obtain that (φ|Wi
Vij

)−1(Wi ∩ U) is open
in Vij, and thus in V , for all i, j. Hence φ−1(U) is open and thus φ is
continuous.

Now let f ∈ O(U) and P ∈ φ−1(U) be arbitrary. Let i be such that
φ(P ) ∈ Wi and let j be such that P ∈ Vij. Then on the open neighborhood

Vij ∩ φ−1(Wi ∩ U) of P , f ◦ φ agrees with f ◦ φ|Wi
Vij

, the latter of which is

regular by hypothesis. Hence f ◦ φ is regular at every point of φ−1(U). So
we conclude that φ is indeed a morphism.

Now to the exercise. Let W1 = Vp(f) ∩ {x1 ̸= 0} and W2 = Vp(f) ∩
{x3 ̸= 0}, and note that Vp(f) = W1 ∪W2 is an open cover. Furthermore,
φ−1(W1) = {s ̸= 0} and φ−1(W2) = {t ̸= 0} are open as well. Note that
under the natural isomorphisms φ−1(Wi) = A1 and W1 = Va(f∗1) resp.

11



W2 = Va(f∗3) (dehomogenization w.r.t the first resp. third variable), the
(co-)restrictions φi := φ|Wi

φ−1(Wi)
are given by

φ1 : A1 → Va(x
2
2 − x3) ⊆ A2

x2,x3

t 7→ (t, t2)

(as [1 : t] maps to [1 : t : t2]), and

φ2 : A1 → Va(x
2
2 − x1) ⊆ A2

x1,x2

s 7→ (s2, s)

(as [s : 1] maps to [s2 : s : 1]). These are clearly morphisms, so φ is a
morphism.

In fact, φ1 and φ2 are isomorphisms, with inverse being projection to
the first or second component. So we already obtain that φ is surjective.

Note also that φ is injective: let P be any point in the image of φ. If
P ∈ (W1 \ W2) ∪ (W2 \ W1), then P has only one preimage as φi is an
isomorphism. If P ∈ W1 ∩W2, we have to see that φ−1

1 (P ) = φ−1
2 (P ). In

this case, we have P = [s2 : st : t2] with s, t ̸= 0, and hence

φ−1
1 (P ) = [1 : t/s] = [s/t : 1] = φ−1

2 (P ).

Therefore, φ is injective.
In conclusion, we may consider the set-theoretic inverse ψ = φ−1 : Vp(f) →

P1. Then the (co-)restrictions ψi : Wi → φ−1(Wi) satisfy ψi = φ−1
i , so as φi

is an isomorphism, ψi is in particular a morphism, and so ψ is a morphism,
as being a morphism is a local property. Hence φ is an isomorphism.
In conclusion, we have Vp(f) ∼= P1 for all irreducible forms f ∈ k[x1, x2, x3]

of degree 2.
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