ALGEBRAIC CURVES
SOLUTIONS SHEET 6

Unless otherwise specified, k is an algebraically closed field.

Exercise 1. Let V| W be varieties and assume that W is affine.

(1) Show that there is a bijection Homy - (V, W) =~ Homy_q,(O(W), O(V)).
(2) Show that there is a bijection O(V) ~ Homy,,(V, A}).

(3) Show that O(P}) ~ k.

(4) Show that O(P}) ~ k for all n > 1.

Solution 1.

(1) Let ¢: V. — W be a morphism of varieties. Then ¢*: O(W) — O(V)
defined by f — f o ¢ is a k—algebra morphism.
To go in the other direction, let ®: O(W) — O(V) be a k-algebra ho-
momorphism. There are at least two approaches:

Approach 1: We use that by Exercise 3.5, points of W correspond to maximal ideals
of I'(U), and as U is affine we have I'(U) = O(U). Now notice that for
any P € V, we have an evaluation morphism evp: O(V) — k, defined
by f — f(P). Note that this is a morphism of k-algebras. There-
fore, we obtain a k-algebra homomorphism evpo®: O(W) — k, so in
particular it is surjective (on elements of & it is the identity). Hence
ker(evp o®) is a maximal ideal of O(W), and hence it correspond to
a point Qp € W. Let us define a map ®: V — W by ®(P) := Qp.
Let us show that ® is a morphism of varieties.

First we have to show continuity. So let W/ C W be closed, and
let I(W’') C O(W) be its ideal. Note that as the correspondence in
Exercise 3.5 is inclusion reversing, we have for all P € V

P(P) e W «— V(I(P(P))) CV(I(W")
= [(¥(P)) 2 I(W)
<= ker(evpo®) D I(W')
— VfelIW'): o(f)(P)=0
= Pec [ o))
fer(w’)

where we used that by definition the ideal of {®°(P)} is ker(evp o®).
As for any f, ®(f) € O(V) is continuous as a function V' — k, we

arrived in the end at an intersection of closed subsets in the end. Hence
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Approach 2:

we o'btain that (®°)"Y(W') = Nrerow ®(f)~1({0}) is closed, so @ is
continuous.

Now to verify that it is indeed a morphism, let us first show that
®(f) = fo® for any element f € O(W). This comes from the
following very general observation: if X is any affine variety, @) € X
is any point and ¢ € O(X) any function, then g — ¢(Q) € I(Q).
Therefore, in our present situation we have

f— f(®(P)) € I(?"(P)) = ker(ev, o®)
and thus
0=-ev,od (f — f(®(P))) = ®(f)(P) — f(®(P)).

As this holds for every P € V, we indeed conclude that ®(f) = fo®”.
Finally, let us show that ®” is a morphism by using Lemma 3.8. As
W is affine, we can view it as a Zariski closed subset W C A", and
let z1,...,2,: A" — A! be the coordinates. By abuse of notation, we

also denote by z1, ...z, their images in O(W) (i.e. their restrictions
to W). Then we have for all 7 that

z;0® = d(z;) € OV),

i.e. ;00" is regular. By Lemma 3.8, we conclude that ®” is a morphism
of varieties.

We are left to show that the two constructions are mutually inverse.
On the one hand, let ¢: V — W be any morphism of varieties, and
let P € V be arbitrary. Then for any f € O(W) we have

F(@*(P)) = ¢*(/)(P) = f(&(P)).
In particular, by taking f = x; for 1 <14 < n, we obtain that ¢**(P) =
#(P), and thus ¢* = ¢.
On the other hand, let ®: O(W) — O(V) be any morphism of k-
algebras, and let f € O(W) be arbitrary. Then for any P € V, we
have

O (f)(P) = f o @' (P) = ©(f)(P),

so ®*(f) = ®(f), and as f was arbitrary we conclude ®* = ®.
Another way of defining ®” is the following: fix a closed embed-
ding W C A", and denote by zq,...,x, the coordinates. Denote
by @1, ..., T, € O(W) their restriction to W. We define a map

VW
P (®(z1)(P),...,2(Tn)(P)).

Firstly, we have to show that this is well-defined, i.e. that forall P € V
we indeed have (®(z1)(P), ..., ®(x,)(P)) € W (a priori it is just some
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point in A™). To do so, let f € I(W) C k[xy,...,x,] be arbitrary. As
f is a polynomial and polynomials commute with morphisms of rings,

we have
f(@@)(P),....2(@)(P)) = f(evpo®(T1),. .. ,evpod(T,))
=evpod(f(Z1,...,Tp))
T
=0,

where in the last step we used that f € I(W). Hence we indeed
conclude that ® (P) € W for all P € W.

To verify that ® is a morphism, we again use Lemma 3.8: for every
1 < i < n we have by construction that x; o ® = ®(z;) € O(V), i.e.
it is regular on V. Hence ®° is indeed a morphism.

Finally, we have to show that the two constructions are mutually in-
verse. On the one hand, let ¢: V — W be any morphis of varieties,
and let P € V be arbitrary. Then

¢ (P) = (¢"(@)(P), ... 0" (Ta)(P))
= (@(¢(P)), .., Tu(0(P)))
= (6(P)1, - (P)n)
= o(P),

so we conclude ¢* = ¢.
On the other hand, let ®: O(W) — O(V) be arbitrary, and let also
f=f+I(W)e€OW)and P €V be arbitrary. Then we have

" (f)(P) = f(’(P))
= f(@@)(P),..., 2(7)(P))
= [(2@)(P), ..., ®(7,)(P))
= O(f(T1,...,7))(P)
=7
= o(f)(P),

where we again used that polynomials commute with ring morphisms,
so we conclude & = ®.
(2) Clearly from (1) we get that Homy,,(V,A) ~ Homy_ ., (k[z], O(V)). So
it suffices to see that Homy_q4(k[z], O(V)) >~ O(V). This is clear, since
a k—algebra homomorphism from k[z] into any k-algebra is completely

determined by choosing the image of x. More concretely, one can verify
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that

Homy, a4 (k[z], O(V)) = O(V)
O — d(x)

is a bijection, where the preimage of f € O(V) is the unique k—algebra
homomorphism k[z] — O(V) sending z to f.

(3) Using question 2, O(P}) = Homy,, (P!, A'). Call z; and x5 the projective
corrdinates and P! = U; UU, the corresponding standard affine open cover,
with isomorphisms ¢;: A! — U;. Let f: P! — Al be arbitrary. Then we
obtain morphisms f o ;: Al — A! which are given by some polynomial
p; € k[x]. Note that for any a € A\ {0} we have

pa(a) = fops(a) = f(la: 1)) = f([1: 1/d]) = fopi(1/a) = pi(1/a).

As this equality holds on the dense open set A\ {0}, we conclude that p(z)
and p;(1/x) agree as elements of the localization k[z,z~!]. But as both p;
and po are polynomials, this can only happen if both of them are constants.
Hence f has to be constant as well. Therefore, the map k& — O(P') sending
an element a of k to the function constantly equal to k is a bijection.

A nice notational trick is the following: let for ¢;: Al — U; we denote
the coordinate of A! by the symbol 5/, and for ¢y: Al — U, we denote
the coordinate of A by /5.

Because of the way ¢1, ¢, are defined, two functions p;: A} o Al
il/m — A! glue to a function f: P' — A! (i.e. p;o;! and

p2 © o5 * agree on the intersection U; N Uy) if and only if pi(zo/71) =
pa(x1/x9) as elements of k[xy /2, x2/x1]. One could also solve the exercise
this way.
(4) There are at least three approaches to solve this
Approach 1: We can mimic the solution to point (3), but first we need to intro-
duce some notation, and discuss how to think of regular funcitons
on P". Denote by x1,...,2z,,1 the projective coordinates on P", by
P* = Uy U---UU,y; the standard open cover, with isomorphisms
w;: A" — U;. Denote the coordinates of A™ by v1,...,y,. Then in
particular, we have an isomorphism ¢;: Opn(U;) — kly1,...,yn]. So
which regular functions on U; are mapped to the variables yq, ..., y,7
Note that the functions xi/x;, ... x;_1/x;, i1 /Tiy ..., Tpyr/x; on P
are elements of Opn(U;), and from the definition of ¢;, you can con-
vince yourself that we have in fact ¢;(x;/z;) = y; for j < i and
©i(z;/x;) = yj—1 for j > i. Therefore, Opn(U;) is generated as a k-
algebra by x1/x;, ... 21/, Tig1 /T, . .., Ty /T, and these functions
4
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are algebraically independent over k. We may summarize this by writ-
ing

X Ti—1 I; L
Opn(Ul):k’[—l, 1, +1,..., +1:|,
remembering that the z;/z; behave like the indeterminate variables in
a polynomial ring.
Now by point (2) of Exercise 2 applied to U; \ V(z;/z;), we actually

have

O]Pn(Ui N UJ) - k |:

o . 5 9oy

T Ti—1 Tit+1 Tn+1 Ty
) M )
ZT; Z; ZT; ZT; T

a b
ria;

= { P |a,b>0, p € kl[r1,...,Tns1]ars, p not divisible by xi,:vj}

Note that the image of the restriction map Opn(U;) — Opn(U; NU;) is
precisely the set of those elements which in the above description have
b = 0. Similarly, the image of the restriction map Opn(U;) — Opn(U;N
U;) is the set of elements with a = 0. Therefore, the intersection of
the images of Opn(U;) and Opn(U;) inside Opn(U; N U;) is the set of
elements with a = b = 0, i.e. it is just k.

Now to the actual problem: let f € O(P") be arbitrary. Then f|y,qy; €
Opn (U; NU;) lies in the images of both Opn(U;) — Opn (U; N U;) and
Opn (U;) — Opn(U; N U;) (with preimages f|y, resp. fl|y,). By the
above discussion, we must have f |UimUj = ¢ for some ¢ € k. But then
the vanishing locus of the function f — ¢ € O(P™) contains the dense
open set U; N Uj, so we obtain that V(f —c¢) =P, ie. f=c.

Remark. This proof actually shows that for all i # j we have Opn (U;U
U;) = k. This is actually a stronger statement than Opn(P") = k:
indeed, as two regular functions which agree on a dense open subset
agree globally, the restriction map Opn (P") — Opn (U;UU;) is injective,
so the latter being k implies that the former is as well.

On the other hand, it is not a coincidence that in our situation the map
Opn (P") — Opn(U; U U;) is an isomorphism. Indeed, there is a result
known as Hartogs Lemma, which says that for a normal (google it!)
variety X and an open set U C X such that dim(X \U) < dim X — 2,
the restriction map Ox(X) — Ox(U) is an isomorphism. Note that
P\ (U; UU;) 2 P* 2 so taking for granted that P" is normal, we see
that Opn (P™) — Opn(U; U U;) is an isomorphism.

Approach 2: The function field K (P") of P" is the following subfield of k(z1, ..., Zn41):

KP") = {g | f,g € k[x1,...,2m41] homog. of the same deg.} Ck(z1y. . Tng1)-
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Note that the natural map Op(P") — K(P") is injective, because if
two regular functions agree on a dense open subset then they agree
globally.

Now let f € Opn(P") be arbitrary, and regard it as an element of
K(P™), where we can write f = p/q with p,q € k[, ..., z,41] ho-
mogeneous of the same degree. Now as k[z1,...,z,41] is a UFD and
irreducible factors of homogeneous polynomials are homogeneous, we
may assume that p, ¢ are coprime. In particular, if f = a/b for a,b
homogeneous of the same degree, we must have p | @ and ¢ | b. So f
is defined precisely on P" \ V(¢). But as f € Opn(P") by assumption,
we assume V(q) = (). This can only be the case if ¢ € k, and thus
also p € k. Hence f = p/q inside K (P"), and as Opn(P") — K(P") is
injective, we conclude that f is constant.

Approach 3: Let f € Opn(P") be arbitrary and consider it as a morphism f: P" —
Al by point (2). Let P,@Q € P" be arbitrary distinct points, and write
P = [p] resp. Q = [q] for some p,q € A"\ {0}. Now note that we
have a morphism ¢ defined by the formula

R I

[a : b] — [ap + bql.
You can either verify directly that this is indeed a morphism, or use
that it is a composition of inclusions of "hyperplanes’ at infinity P —
P™*! (sending [p] to [p : 0]) and a projective change of coordinates, all
of which we know to be morphisms.
Now note that fop: P! — A so by point (3) it follows that f o ¢ is
constant. In particular, we have

f(P)=Ffop([1:0]) = fop(0:1]) = f(Q).
As P, () € P" were arbitrary, we conclude that f is constant.

Exercise 2. Let n > 1 and f € k[xq,...,x,).

(1) Show that A} — V/(f) is affine. What is its ring of regular functions?
(2) Show that A? — {(0,0)} is not affine. (Hint: compute the ring of regular
functions).

Solution 2.

(1) Let D(f) denote A™\ V(f). Denote by xy,...,z, the coordinates of A™,
and by z1,...,%,,y the coordinates of A"™!. On the one hand, consider
the map

¢: D(f) = V(1 —yf) C A"

1
(X1, ..y Tp) (ml,...,xn,—>;
flz, .. xy)
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it is straightforward to see that the image of ¢ indeed lands in V(1 — yf).
Note that z; 0 ¢ = x; and y o p = 1/f, all of which are regular on D(f).
Hence by Lemma 3.8 we conclude that ¢ is a morphism.

On the other hand, let 7: A"*1 — A™ be the projection onto the first
n-coordinates, which is a morphism. Then 7|y q_yp): V(1 —yf) = A" is a
morphism as well. Furthermore, you can verify that the image of 7|y 1_yp)
lands inside D(f). As corestricting to an open subset preserves morphisms
(this comes just from the fact that for inclusions of open subset U C V C W
we have Oy (U) = Ow (U)), we obtain that ¢ = W‘e(({zyf)I V(1 —yf) —
D(f) is a morphism.

Finally, it is straightforward to see that ¢ ot = Idy_yy) and 1 o p =
Idp(sy, so they are isomorphisms, and in particular D(f) is isomorphic to
the affine variety V(1 — yf).

(2) Denote W = A?\ {(0,0)}, and by x,y the coordinates on A%. We start by
computing O(W): let f € O(W) be arbitrary. There are two approaches
to solving this

Approach 1: As A? is irreducible, for any open subset U C A? the natural map

O(U) — K(A?) from the regular functions on U into the function
field of A% is an injection. Note that K(A?) = k(z,y), so we can
write f = a/b for some a,b € k[z,y] which are coprime. Assume by
contradiction that b has positive degree. Note that then V' (b) contains
infinitely many elements; we will prove this at the end. In particular,
the set V(b) \ {(0,0)} is non-empty, i.e. it contains some point p. But
then f is not defined at p: if ¢,d € k[z,y| are such that f = c¢/d,
we must have in particular that b | d, so also p € V(d). On the
other hand, as f € O(W) it must be defined at p, contradiction.
Hence we must have b € k£*, and thus f € k[x,y]. Hence we conclude
that O(W) = k[x,y], i.e. the restriction map O(A?) — O(W) is an
isomorphism.
We finish by proving that for non-constant b € k[x,y|, the vanishing
locus V(b) is infinite: indeed, up to interchanging x and y, we may
assume that a positive power of x appears in b. Then, write b =
bo(y) +b1(y)x+- - - +ba(y)x? for some by, . .., by € k[y], with by # 0 and
d > 0. In particular, V(by,...,bg) is finite and thus A\ V(by,. .., bg)
is infinite. Furthermore, for ¢ € A\ V(by,...,by), the polynomial
b(z,c) € k[z] has positive degree, so as k is algebraically closed, there
exists x. € k with b(z.,c) = 0. Hence V(b) contains at least as many
elements as A\ V(by,...,by), and thus is infinite.



Approach 2: Let f € O(W) be arbitrary. Note that W = D(z) U D(y), and by
point (1) we have

O(D(x)) = klz,y,z ']
O(D(y)) = klz,y,y™ "]
O(D(z) N D(y)) = O(D(xy)) = klz,y, (xy) '] = klz,y, 27"y~

It is then clear that the image of the restriction map O(D(x)) —
O(D(zy)) is precisely the set of those elements of k[z,y,z™! y!]
where no negative power of y appears, and the image of the restriction
map O(D(y)) — O(D(xy)) is precisely the set of those elments where
no negative power of x appears. Hence, the intersection of these im-
ages is the set of those elements where no negative power of neither x
nor y appear, i.e. it is k[z,y] C klz,y, 27,y ]. As f|p(ay) lies in the
intersection of these images, we conclude that f|p,) € klz,y], and
as D(zy) is dense open in W we conclude that f € k[z,y]. In other
words, the restriction map O(A?) — O(W) is an isomorphism.
Assume now by contradiction that O(W) is affine. Then by point (1)
of Exercise 1, the restriction map ®: O(A?) — O(W) and its inverse
U: O(W) — O(A?) induce mutually inverse morphisms ¢: W — A? and
i A2 — W. If v: W — A? denotes the inclusion, then clearly ® = — o,
so in fact we see that ¢ = (. But then ¢ has to be an inverse to the in-
clusion map, which doesn’t exist (where is (0,0) sent?). We arrived at a
contradiction, so W cannot be affine.

Remark. As in point (4) of Exercise 1, if we admit that A? is normal, then
by Hartogs Lemma it would follow immediately that O(W) = O(A?), as
A%\ W = {(0,0)} has codimension 2.

Exercise 3. Let ¢ : V — W be a morphism of affine varieties and ¢* : T(W) —
['(V) the corresponding morphism of coordinate rings. Let P € V and @ =
©(P) and consider local rings Op(V), Og(W) with maximal ideals mp, mg. Show
that ¢# extends uniquely to a ring homomorphism Og(W) — Op(V) and that

¢*(mg) C mp.

Solution 3. Note that we have the commutative diagram

(W) = I(V)
% leVp
k
and thus

(¢°) 7 (mp) = (¢F)H(ev3'(0) = (evp opf) 7H(0) = evg' (0) = mq.
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Note that by abuse of notation, we also denote the maximal ideals in I'(V') resp.
['(W) corresponding to P resp. () by mp resp. mg.
Consider now the following commutative diagram

W) —£ T(v)
me lLP
LV )mp
If now f € I'(W) \ mg, then as (¢*)~1(mp) = mg we have ¢*(f) ¢ mp, and thus

tp o @*(f) is a unit in I'(V)y,. By the universal property of localization, there
exists a unique map gogg fitting in the commutative diagram

I'(

(W) —& 5 (V)

o I

F(W)m T> F(V)mp

Q
¥p

Note that from this diagram, we infer that % maps f/g € LW )mg, to ©*(f)/¢*(g) €
['(V)mp. By point (3) of Proposition 3.11, we have I'(V ), = Op(V) and I'(W ), =
Og(W), where a fraction f/g is mapped to [D(g), f/g]. It is then straightforward
to see that the induced map ¢%: Og(W) — Op(V) maps [U, f] to [p~1(U), f o).

Remark. e For a morphism of rings ¢: R — S and maximal ideals m C R
and n C S, requiring f(m) C n is equivalent to requiring m C f~!(n).
Clearly the latter implies the former. On the other hand, if we suppose
that f(m) C n, then f~!(n) is a non-trivial ideal of R containing m, so by
maximality we must have f~!(n) = m.

e Note that it is true for general varieties V, W (not necessarily affine), that
a morphism ¢: V' — W induces a morphism of local rings gogj: Oqg(W) —
Op(V) forany P € V and Q = ¢(P) € W, and that furthermore (%) (mp) =

mg. Indeed, we may define ¢% as
Pp: Og(W) = Op(V)
U f] = [e7(U), fogl.

Of course we need to check a couple of things: as ¢ is a morphism and
©(P) = @, we have that ¢ '(U) is an open set containing P and f o
¢ is regular on ¢ !(U). Furthermore, for two choices of representatives
(U, f] = [U', f], it is straightforward to check that [~ (U"), f o ¢], so
9053. Also, as precomposition with ¢ respects the ring operations, it is also

straightforward to check that <p§3 is a morphism of rings. At last, let us
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check that (¢%)~'(mp) = mq. For this, it suffices to see that we have the
commutative diagram

Og(

o
—> Op
In particular, we have

(¢5) H(mp) = (ph) M (evp'(0) = (evp oph) T (0) = evy'(0) = mg.
which completes the construction.

e The construction is functorial: if we have morphisms U % V LA W, and
PeU,Q=¢(P)€eV as well as R =1(Q), then (10 )y = ¢ o ¥},

Exercise 4. Let n > 1 and V' a variety. We use projective coordinates x;, 1 <1 <
n+ 1 on P}. Suppose there exist an open cover (U;)i<i<n+1 of V' and morphisms
of varieties ¢; : Uy — {x; # 0} C P}, 1 <4 <n+1,such that Vi # j, () v.rv, =
(@j)inu,- Show that there exists a unique morphism ¢ : V' — P} such that
o1, = wi. We say that ¢ is obtained by glueing the ¢;, 1 <7 <n+1.

Solution 4. We can clearly define a map
p: V=P
x €U = p;i(x)

As the ¢;’s agree on the intersections of the U;’s, it is well-defined. We need to
show that it is a morphism. Let f € Opn(W) be a regular function on an open
subset W C P". Let P € ¢~ (W) be arbitrary and let i be such that P € U;. Then
define W; :== WnN{z; # 0}. Note that fop = foyp; on ¢; }(W;), and P € ¢; {(W;).
As f o ¢; is regular, we thus obtain that f o ¢ is regular at P. As P € o= }(W)
was arbitrary, we conclude that f o is regular, i.e. fop € O(p ' (W)). Hence ¢
is a morphism.

Exercise 5. Let f € k[xy, 2o, 23] an irreducible form of degree 2 and consider
Ve(f) C P
(1) Show that, up to a linear change of coordinates, we can assume that f =
73 — x123. (Hint: remember we classified similar subvarieties of A2).
(2) Show that the map:
P, — P
(s:t) = (s*:st:t?)
induces an isomorphism P} ~ Vp(f). (Hint: take a look locally in the
standard affine opens of projective space and use exercise 4).

Solution 5.
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(1) Let f. be the dehomogenization of f (with respect to x3). Note that f, €
k[x1, 9] is quadratic: indeed, we have f = xd(f,)* for some d > 0, and as
f is irreducible we must have d = 0, i.e. f = (f.)*. As homogenization
preserves the degree, we obtain that f, is of degree 2. Furthermore, as (-)*
is multiplicative, we obtain that f, is irreducible.

By (the solution of) Exercise 6 on Sheet 4, there exists a linear change
of coordinates T': A? — A? such that f,oT € {179 — 1,2? — x5}. Now let
T': A3 — A3 the linear change of coordinates which is 7" on the first two
components and the identity on the third. As —oT” and — o T preserve
the degree of a polynomial, it is straightforward to check that

(goT)* :g*oT/
for every g € k[xy, z5]. In particular, we obtain
foT'=(f) o1 = (fioT),

soas f,oT € {x1wo—1, 23 —x5}, we obtain foT" € {x xo—23, 22 —x923}. SO
by permuting the coordinates (which is linear), we obtain a linear change
of coordinates 7" such that foT” = x3 — xx3.

(2) Related to Exercise 4 is the following slogan, which will be what we use:
being a morphism of varieties is a local property. Concretely, what it means
is the following:

Let V, W be varieties, and let ¢: V' — W be a map of sets. Suppose that
there exists an open cover W = | J, W;, and for every i a cover o 1(W;) =
U; Vi with Vi; €V open for every j, such that the (co-)restriction ¢ 3; is
a morphism for all ¢, 7. Then ¢ is a morphism.

Indeed, if U C W is open, then

o) =Ueminu) =UJUvs netmino) = U

i 1,J

v WiN ).

As gom/; is continuous for all 4, j, we obtain that ((p\V;)_l(WZ NU) is open
in Vj;, and thus in V, for all 4,j. Hence ¢ '(U) is open and thus ¢ is
continuous.

Now let f € O(U) and P € ¢ '(U) be arbitrary. Let ¢ be such that
©(P) € W; and let j be such that P € Vj;. Then on the open neighborhood
Vi; N {(W;NU) of P, fop agrees with f o 32, the latter of which is
regular by hypothesis. Hence f o ¢ is regular at evéry point of o~ 1(U). So
we conclude that ¢ is indeed a morphism.

Now to the exercise. Let Wy = V,(f) N {x; # 0} and Wy = V,(f) N
{z3 # 0}, and note that V,(f) = Wy U W, is an open cover. Furthermore,
e 1 (W) = {s # 0} and =} (Wy) = {t # 0} are open as well. Note that
under the natural isomorphisms ¢~ '(W;) = A! and W, = V,(f.1) resp.
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Wy = Vu(fs3) (dehomogenization w.r.t the first resp. third variable), the
(co-)restrictions ; = go|3§1 (w,) are given by

pri Al = V(23 —23) CA],,,
t e (t,17)
(as [1:t] maps to [1:t:¢%]), and
©o: At — V(25 — x1) C A?

1,22
s+ (5%, 5)

(as [s : 1] maps to [s* : s : 1]). These are clearly morphisms, so ¢ is a
morphism.

In fact, ¢ and o are isomorphisms, with inverse being projection to
the first or second component. So we already obtain that ¢ is surjective.

Note also that ¢ is injective: let P be any point in the image of ¢. If
P e (Wy \ Wy) U (W5 \ Wi), then P has only one preimage as ¢; is an
isomorphism. If P € W; N W, we have to see that ¢, '(P) = ¢, (P). In
this case, we have P = [s? : st : t?] with s,¢ # 0, and hence

e (P)=[1:t/s]=[s/t: 1] = oy (P).
Therefore, ¢ is injective.

In conclusion, we may consider the set-theoretic inverse ¢ = ¢~ V,(f) —
P!. Then the (co-)restrictions v;: W; — ¢~ H(W;) satisfy 1; = ¢; ', so as ¢;
is an isomorphism, v; is in particular a morphism, and so v is a morphism,
as being a morphism is a local property. Hence ¢ is an isomorphism.

In conclusion, we have V,(f) = P! for all irreducible forms f € k[x1, 22, x3)
of degree 2.
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